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A B S T R A C T

This article presents a multivariable optimization of the energy and exergetic performance of a power generation
system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine
Cycle (SORC) using toluene, with reheater (S� CORH

2 � SORC), and without reheater (S� CONRH
2 � SORC) using

the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass,
energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction
of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a
sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy
destroyed was studied, which were the objective functions selected in the proposed optimization. The results
show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system
without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by
optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH)
was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm,
exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses
of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system,
evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guar-
anteeing that it is the ideal algorithm to solve this case study.
1. Introduction

The promoting of environmental protection and energy efficiency has
been the goal of increasing the thermal performance of the power gen-
eration processes [1], in addition to implementing renewable energy
source combinations [2], and conventional source [3]. The use of waste
heat recovery systems from various energy sources for generation pur-
poses has continuously presented both technical and economic chal-
lenges, linked to the high purchase cost and low thermal efficiency of
these solutions [4]. Therefore, it has been determined that the organic
Rankine cycle (ORC) is very suitable for absorbing and recovering me-
dium and low-quality waste heat [5, 6], and can be implemented in
power conversion plants [7], increasing the efficiency of the primary
system with the aim of developing more efficient processes for energy
production [8].
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Carbon dioxide has been widely used as a working fluid in thermal
generation systems, due to its easy acquisition, relatively low economic
cost, and its ability to withstand extremely high temperatures [9]. These
characteristics have allowed the development of some researchers, such
as Garg et al. [10] who carried out a comparative study between the
different trans-critical, supercritical and subcritical systems with CO2 as
working fluid in a Brayton cycle, obtaining better results for the super-
critical CO2 system (S-CO2) because it makes better use of the thermal
properties of the fluid due to its operation near the critical point.

This phenomenon is related to the pre-compression in the Brayton S-
CO2 cycle, which implies high efficiency, higher heat transport capacity,
and smaller equipment with lower acquisition costs [11]. Due to several
studies related to the performance of the Brayton S-CO2 cycle, it is
observed that due to the use of smaller components, it has been possible
to reduce the costs of energy generation [12]. The high-efficiency
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capacity that can be achieved by the Brayton cycle is due to the reduction
of compressor energy, which is reflected by significantly increasing the
density of the supercritical fluid since increasing the density to a value
close to the critical point reduces the energy consumption of the
compressor [13]. Likewise, thermodynamically a great advantage of the
Brayton carbon dioxide cycle consists of the high ratio of useful work to
expansion, that is, lower energy to compression than the energy to
expansion handling a range from 0.7 to 0.85 when the compressor input
is at supercritical conditions [14].

On the other hand, Chacartegui et al. [15] proposed a different
alternative for obtaining energy through a combined cycle that uses a gas
turbine with carbon dioxide as the working fluid, and an Organic
Rankine Cycle, obtaining promising results for integration with solar
tower power plants. Also, Bae and lee [16] worked with a Brayton S-CO2
hybrid system with the Organic Rankine Cycle, which improved the net
performance of the system and the operating range taking into account
that a lower volume of the recuperator can be used in the Brayton Cycle.
Therefore, the ORC Cycle is considered a system that significantly in-
creases the overall efficiency because it has the advantage of operating as
a tail cycle and recovering heat from other alternative sources, such as
heat rejection from other cycles, and engine exhaust gases, which require
the use of a thermal oil that receives heat below its critical temperature
and an organic fluid that adapts to the system [17].

Waste heat recovery systems based on ORC have become in recent
years a technology that can be applied in energy conversion at an in-
dustrial level with great technical feasibility [18], and a good cost-benefit
ratio [19]. ORC uses an organic fluid such as refrigerants and hydro-
carbons, which fit into the system better than water to reduce heat source
temperatures [20]. However, due to high pollution rates, environmental
protection has been chosen, and fluids such as chlorofluorocarbons,
which have a negative impact on the atmosphere, have been penalized in
these applications [21], which makes the correct selection of the organic
working fluid a great technical and research challenge [22].

Thus, Toffolo et al. [23] have oriented its research towards the eco-
nomic profitability that can be obtained through the selection of an
organic working fluid, and the adjustment of the operational parameters
in the ORC system to obtain the best cycle configuration, based on a
thermodynamic optimization procedure of the original system configu-
ration, and design parameters that examine all possible configurations,
design options around the best values of the objective function, and
economic modeling procedure validated on real cost data, and the study
of out-of-design behavior.

On the other hand, Zare V [24]. complemented with economic
criteria, the thermal performance studies carried out on different ORC
configurations, where the better energy results were obtained for the
regenerative organic Rankine cycle. The economic analysis was carried
out under a methodology that allowed the design of a profitable waste
heat recovery system in terms of total investment capital, and operation
and maintenance costs. However, in the event that equipment costs are
not known, but technical details are available, they can be estimated
using the percentage correlations of the equipment cost. Bejan et al. [25],
Smith [26], and Towler [27] propose a correlation to calculate the costs
for various types of process equipment.

To increase the performance of the ORC system, technical and eco-
nomic criteria have been proposed for the optimal selection of the
organic working fluid, taking into account the international standards
and regulatory framework for the environmental preservation [28].
Similarly, one of the techniques used to increase the thermal perfor-
mance of the system is to identify the components with the greatest ir-
reversibilities through traditional exergetic analysis to propose
improvement opportunities. However, this analysis does not provide the
values of the operational and design variables that optimize system
performance [29]. Thus, the implementation of optimization algorithms
based on system models, in these cases, allows obtaining the optimal
conditions to achieve the best performance and opportunities for energy
2

and exergetic improvement, providing data on the portion of exergy
destruction that can be avoided [30].

The development of new technologies has been considered among the
main alternatives and techniques for increasing energy efficiency since
they allow the modernization of machines and configurations of produc-
tion systems by others that have a better overall efficiency [31, 32].
Increased overall efficiency in power generation systems such as super-
critical Brayton cycles CO2, can be effectively achieved by taking advan-
tage of waste heat through an ORC, and optimizing it from an energetic
and exergetic approach, this being the fundamental purpose of this work.
There are several reasonswhy this work is being developed, amongwhich
the need to conserve natural resources, the limitations associatedwith the
availability of spaces to generate energy in the places where these gen-
eration systems are installed, the cost savings required to make these so-
lutions viable, the incentives obtained by proposingmore efficient energy
generation processes that have already been included in the energy pol-
icies, and regulatory framework in different countries [31].

Therefore, the main contribution of this article is to propose a
comparative energy and exergy optimization using three swarm intelli-
gence algorithms on the supercritical Brayton CO2 system with and
without reheating integrated to an ORC cycle as bottoming cycle, which
allows to increase overall thermal efficiency and obtain viable energy
generation indicator, aspects that currently limit its technological
growth, acceptance, and dissemination of this technology in the indus-
trial sector. The performance of the PSO, GA, and RPS algorithms is
studied under two optimization problems in the combined Brayton-ORC
thermal system, the exergy destruction minimization, and the thermal
efficiency maximization using the elapsed time, the root mean square
error and the diversity as performance indicators. Also, a two-sample z-
test was conducted to determine the significance level of the swarm in-
telligence algorithms in the energy and exergy optimization of the
thermal system.

2. Methodology

2.1. System description

Initially, the carbon dioxide at a high temperature and pressure point
(St.1) enters the primary turbine (10) of the Brayton S-CO2 cycle, and
then it is reheated (13) and expanded at a lower pressure and tempera-
ture in the second turbine (11). Afterward, a recuperator is used to allow
the reheating of the current that leaves the compressor (8) at point (St.7)
and is directed to the heater (12) at point (St.8), while the St.5 current is
cooled by yielding heat to the thermal oil so that it is subsequently
compressed (St.6) by the compressor (8).

The thermal oil (Therminol 75) receives the heat in the heat
exchanger (1), to be transferred to the SORC evaporator (2), which has
three stages called preheating, evaporation and overheating, whose
purpose is to transfer the heat to the toluene, and then through Pump 1
(3) drive the Therminol 75 to repeat the thermal oil circuit. Afterward,
the organic fluid at a high temperature and pressure (St.12) enters the
turbine (4) and is expanded by decreasing its pressure and temperature to
enter the cooler (5) and the condenser (6), where the organic fluid is
cooled by the water that enters at ambient pressure (St.17 - St.19), and
then it is directed to the reservoir. Then, the working fluid when leaving
the condenser (6) at point (St.15) is a saturated liquid, to enter Pump 2
(7), and then the evaporator (St.16), completing the cycle as shown in
Figure 1.

2.2. Thermodynamic model

For the thermodynamic study of the system, the mass balance as
shown in Eq. (1) is applied, and energy by means of Eq. (2) to each of the
components considering a steady-state operation for the components,
according to the thermophysical properties of the working fluids oper-
ating in the system. In the case of the Brayton S-CO2 cycle, the carbon



Figure 1. Graphic description of the Brayton S-CO2- SORC power generation cycle.
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dioxide approaches the critical point [33], while in the SORC the
Toluene, has shown good performance in these systems [34], is consid-
ered as the organic working fluid.
X

_min �
X

_mout ¼ 0 (1)

X
_minhin �

X
_mouthout þ

X
_Qþ

X
_W ¼ 0 (2)

where _m is the mass flow, h is the specific enthalpy of the fluid, _Q and _W
are the heat and power rates, respectively. On the other hand, the net
power of the Brayton cycle ( _Wnet; Brayton S�CO2 ), is calculated from the
power values of the turbine primary (10) and secondary (11), and the
compressor (8), as shown in Eq. (3), while the net power of the SORC in
Eq. (4), is a function of the generated power of the turbine (4), Pump 1
(3), and Pump 2 (7).

__Wnet; Brayton S�CO2 ¼ _WPrimary turbine þ _WSecundary turbine � _WCompressor (3)

_Wnet; SORC ¼ _WTurbine � _WPump 1 � _WPump 2 (4)

The specific physical exergy (eex) without considering the variation of
kinetic and potential energy, was calculated by Eq. (5).

eex ¼ðhi � h0Þ�T0 ⋅ ðsi � s0Þ (5)

where h0 and s0 correspond to the specific enthalpy and entropy at the
reference conditions of temperature ðT0), and pressure ðP0Þ, respec-
tively. These reference conditions are T0 ¼ 298:15 K, and P0 ¼
101:325 kPa.

For the exergetic analysis of the system, the balance of exergy was
applied to each component of the system by means of the second law of
thermodynamics (Equation 6) [35].

_Ed ¼
Xn

in

_m ⋅ eex �
Xn

out

_m ⋅ eex � _Ein � _Eout ¼ T0 ⋅ _Sgen (6)
Table 1. Fuel-Product definition for each component.

SORC

Component Fuel Product Loss

Heat exchanger _E5 _E9- _E11 _E11

Pump1 _WP1 _E11- _E10 -

Evaporator _E9- _E10 _E12- _E15 -

Turbine _E12- _E13 _WT1 -

Cooler and condenser - - _E19

Pump2 _WP2 _E16- _E15 -
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where _Ed is the destruction of exergy, _eex is the exergy of flow, _Ein and
_Eout out are the exergy by transfer of energy in the form of heat and work,
and _Sgen is the entropy generated.

From the results of the exergy balance, the exergetic efficiency was
calculated (ηex), both for the system and for each component of the
thermal system is shown in Eq. (7).

ηex ¼
_EProduct

_EFuel
(7)

where _EFuel is the exergy supplied to the component, while _EProduct is the
output exergy. The definition of Fuel-Product for each component of the
system is shown in Table 1.

The thermal efficiency of the Brayton cycle (ηI; Brayton S�CO2) is
calculated by Eq. (6), which is a function of the net power of the Brayton
cycle, and the sum of the heat from the heater (12) and reheater (13),
which make up the heat source.

ηI; Brayton S�CO2 ¼
_Wnet; Brayton S�CO2

_QHeater þ _QReheater

(8)

Eq. (9) is used to calculate the thermal efficiency of the SORC cycle
(ηI; SORC), the net power of the SORC cycle is taken into account, with
respect to the heat recovered from the heat exchanger (1).

ηI; SORC ¼
_Wnet; SORC

_Qheat exchanger

(9)

Thus, the overall efficiency of integrated system Brayton S-CO2 –

SORC is a function of net power and heat source, as shown in Eq. (10).
Therefore, the integrated system presents an enhancement in the thermal
efficiency respect to the Brayton cycle (Δηther).

ηth;overall ¼
_Wnet; Brayton S�CO2 þ _Wnet; SORC

_QHeater þ _QReheater

(10)
Brayton S-CO2

Component Fuel Product Loss

Compressor _Wcomp _E7 � _E6 -

Turbine primary _E1 � _E2 Wt1 -

Turbine secondary _E3 � _E4 Wt2 -

Reheater and heater _E8 � _E1 þ _Qs
_E3 � _E2 -

- - - -

Recuperator _E4 � _E5 _E8 � _E7 -



Figure 2. Flowchart of the PSO algorithm.
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2.3. Optimization algorithms

Genetic algorithms consist of optimization methods developed to
solve complex problems with many elements and a variety of constraints
and variables coexisting in one or several solutions, which are not
possible to approximate by means of linear programming. The methods
to be used in this work are described in the following sections.

2.3.1. Particle swarm optimization (PSO)
It is a stochastic method of optimization, which addresses the

behavior in the society of some communities of organisms such as
swarms of insects, birds, groups of fish, among others. Therefore, such
behavior is based on the transfer of events from each individual to others
of the same group [36, 37] in which the movement of these to a more
favorable position in specific search space is observed. In this way, this
analogy previously commented is implemented where an algorithm
based on a set or population of individuals called swarm was imple-
mented, in which each individual called particle represents the possible
solution. The flowchart of the PSO algorithm is shown in Figure 2, where
it was implemented and developed in the software Matlab®.

The algorithm is made up of a swarm of i particles with negligible
mass and volume, which move in the space of D dimensions. Therefore,
the velocity vector that directs its movement from one position to
another represents the capacity of the particle to find the solution.

The PSO model relates two types of learning for each particle. The
first type is related to the personal experience that the particle develops
as it moves through the search space and this behavior is defined as the
position that gives the best value of the objective function taking into
account the positions previously visited by the particle, it is presented as
a vector and is known as pbest, which is described as follows.

ψP ¼fψP1; ψP2;…;ψPDg (11)

Likewise, the second type of learning is distinguished as gbestwhich is
defined as the learning relationship that the particle obtains in relation to
the interaction between it and the environment, in other words, it can be
said that it is called a collective behavior is denoted vectorially as shown
below in Eq. (12) [37].

ψg ¼
�
ψg1; ψg2;…;ψgD

�
(12)

The position and velocity of each particle in the swarm are calculated
by Eqs. (13) and (14), which are determined for the iteration that is
composed of particle experience and inertial weight.

XiðtÞ¼ fxP1; xP2… xPD g (13)

ViðtÞ¼ fvP1; vP2… vPD g (14)

For each iteration number, the particles are evaluated according to a
4

quality assessment, or journey performance, which is called the fitness
function, which assigns a fitness value to each particle i, and is calculated
by Eq. (15).

f ðiÞ¼�
w1

��δjQðiÞj þ w2

��δjþ1
QðiÞ��… wn

��δjþ2
QðiÞ�� � (15)

where wn is the weight assigned to each sensitivity, Q is a quality factor
taking into account that there is no prioritization between them. On the
other hand, the update of the velocity and position of each particle i for
each generation by modifying its Xi position, and its velocity Vi towards
Pbest (ψP) and gbest (ψg). Thus, the updated velocity and position is
calculated by means of Eq. (16).

Vi
kþ1 ¼ �

4vik
�þ a1 c1;i

�
ψP

k
i � Xi

k
�þ a2c2;i

�
ψg

k
i
� Xi

k
�
… vPD (16)

where Vi
kþ1 is the impact that the existing velocity of the particle has on

the speed with which it will move to the next position, 4vik represents
inertia, the constants “a” are known as acceleration coefficients, and “c”
refers to independent random variables with a uniform distribution.
Additionally, Eq. (17) allows the calculation of the next position of the
particle, taking into account the velocity.

Xi
kþ1 ¼ Xi

k þ Vi
kþ1 (17)

2.3.2. Repulsive particle swarm (RPS)
The repulsive particle swarm optimization method (RPSO) is a model

based on the PSO method that, by increasing its performance when
converging in the search space [42], based on the repulsion between the
particles, because the PSO model does not guarantee the global optimal
when converging, having a large number of optimization parameters and
local optimal [43]. This methodology can find the global optimum with
Eq. (18).

vkþ1
i ¼wvki þ c1r1

�
pki � xki

�þ c2r2w
�
pkj � xki

�
þ c3r3wvr; (18)

where, xki and vki represent the position and velocity of particle i at the kth

moment, pki denotes a best-local position value found during the kth

iteration by particle i, w is an inertial factor. Also, the r1; r2 and r3 are
uniform random variables between 0 and 1, while the c1; c2 and c3 are
the acceleration coefficients. Finally, vr indicates the random velocity
component, which varies between 0 and 1. Thus, for each particle, the
position in the kþ1 iteration is estimated from its new velocity using Eq.
(19).

xkþ1
i ¼ xki þ vki (19)

The implementation algorithm is the same as the one used by the PSO
showed in Figure 2. The PSO parameters are presented in Table 2.



Table 2. The RPSO parameters.

Parameters Value

Maximum iteration 30

Population size 10

Inertial factor, w 0.4–0.9

Cognitive parameters, c1 1.5

Social parameter, c2 0.5

Coefficient acceleration 1.5
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2.3.3. Genetic algorithm (GA)
Genetic algorithms (GA) are biological algorithms based on evolu-

tionary science, which offer solutions to problems in reality [38], thus
obtaining optimal values of the problems, because the algorithm allows a
good approach to the problem [39]. Figure 3 shows the representation of
the GA algorithm steps, where the main steps are the crossover (Step 6),
mutation (Step 7), and selection (Step 5), which are shown as the key
phases of the optimization strategy. The growth response is shown in a
string (either decimal or binary) called a chromosome, and two maternal
strands cross, descendants, or new solutions are created by transferring
genes from the chromosomes.

The crossover always has a higher probability, usually 0.8–0.95. The
mutation, on the other hand, can be done by flipping a few digits of a
string, which generates alternative solutions. The possibility of mutation
is low, from 0.001 to 0.005. The new solutions of each generation are
evaluated according to the idea of the same solution, which is linked to
the objective function of the optimization problem. These new solutions
are chosen based on the best solutions in the population and are passed to
the next generation with few changes, directly to the process called
elitism (Step 8) [40]. Finally, the criterion for the completion of the GA is
to define the maximum number of interactions that the process can have.
The parameters of the optimization algorithm considered in this study
are shown in Table 3.

2.3.4. Performance indicators
Since the analyses of single-objective algorithms start with random

populations and all operators are probability-based, it is important to
evaluate the performance of these algorithms in many ways since a single
measurement cannot determine the correct performance of these with
respect to others. Therefore, objectives criteria such as proximity, di-
versity, and consistency must be met to determine how "ideal" the
Figure 3. GA
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algorithm can be. The diversity allows knowing the compensations be-
tween the objectives that are being compared and those that are in
conflict, the coherence shows if the algorithm can find all the regions of
the space of ideal solutions.

For the evaluation of the indicators for the fulfillment of the objec-
tives, the Elapsed Time will be used, which is the computational time
expended by each swarm intelligence algorithms to find the ideal solu-
tion. Another indicator used in this comparative analysis is the root mean
square error (RMSE) defined by Eq. (20), where the objective is to
minimize the iterative output value (xt) in the numerical computation,
and the optimized last value ( bxt ) at the end of the N population.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

ðxt � bxt Þ2
vuut (20)

For each of the algorithms, the diversity SðtÞ is also evaluated ac-
cording to Eq. (21), which is the Euclidean distance between the possible
solutions, allowing the algorithm to be exploited and explored.

SðtÞ¼ 1
N

XN
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
t¼1

ðxt � bxt Þ2
vuut (21)

Parametric and non-parametric tests are performed in order to
demonstrate a statistical hypothesis, indicating which optimization
strategy is better (parametric) or to show differences between samples
(non-parametric). To determine which swarm intelligence algorithm is
the best for the energy and exergy optimization problem, a parametric
statistical test is done to compare the three algorithms PSO, RPS, and GA
for the Brayton S-CO2-ORC system. The statistical test Z is used for the
parameters selected in Table 4.

The null hypothesis (Ha) in this study is a hypothesis that means that
there is no statistical significance with a confidence level of 95% be-
tween the two optimization algorithm according to the performance
indicator selected. Thus, the alternative hypothesis (H0) is the moti-
vation researcher tried to disprove and is accepted for the cases when
there is a difference statistically significant between the two test sam-
ples. The study was developed using a Z test calculated from Eq. (22),
for the problem to maximize thermal efficiency and minimize destroyed
exergy with and without reheat in the Brayton system. The rejection
zone, according to the values of Table 4, consists of the values less than
1.64.
flowchart.



Table 3. Parameters of genetic algorithm.

Parameters Value

Maximum iteration 30

Population size 10

Crossover factor 0.7

Mutate factor 0.3

Mutate rate 0.1

Selection mode Random

Table 4. Parameters for the statistical parametric z-test.

Parameters Value

Confidence level 95%

Alpha 0.05%

Ha μ1 ¼ μ2
H0 μ1 6¼μ2
Critical Value 1.645
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Z¼ðX1 � X2Þ � ðμ1 � μ2Þffiffiffiffiffiffiffiffiffi
σ2�σ2

q (22)

1 2
N

3. Results and discussions

3.1. Thermal analysis of the Brayton S-CO2 - ORC

The thermodynamic analysis of the ORC system as a bottoming cycle
of the Brayton supercritical CO2 cycle was developed, attending to
properties presented in Table 5 [5].

Considering the values described above, the thermodynamic prop-
erties for each cycle were obtained. In this case, Table 6 shows the values
in each current of the organic fluid in the SORC system, Therminol 75 as
working fluid in the thermal oil circuit, and CO2 for each state of the
Brayton S-CO2 cycle.

Based on the values shown in Table 6 for each thermodynamic state of
the SORC system in which toluene was used as the working fluid, the
exergy balance for each component was developed, and Table 7 shows
the different exergy destruction values according to the fuel and product
approach.

For the integrated system Brayton S-CO2 - SORC with and without
reheater, the exergy destroyed is greater for the heat exchanger equip-
ment, and these are greater for the Brayton S-CO2 system operating with
Table 5. Basic operating conditions for Brayton S-CO2- SORC systems [5, 6, 7].

System parameters used in Brayton-ORC

Configuration Parameter

SORC Turbine isentropic efficiency

SORC Pumps isentropic efficiency

SORC Cooling water temperature

SORC Condenser Pinch Point

SORC Pressure ratio P1

SORC Evaporators Pinch Point

SORC Pressure ratio P2

Brayton Turbine Inlet Temperature

Brayton Brayton Cycle High Pressure

Brayton Efficiency Brayton Turbines

Brayton Compressor Efficiency

Brayton Effectiveness of the exchanger

Brayton Minimum temperature of Pinch Point
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reheater, which is due to the effect of operation at higher temperatures
that increase the heat transfer irreversibilities. Also, the evaluation of the
exergy destroyed in the thermal source in both systems under the engine
operation condition, revealed that the systemwithout reheater presents a
value of 97 kW, which corresponds to the highest value of exergy
destroyed from the devices studied. These results are due to the increase
in the entropy production, since in the expansion stage of the system
through the two turbines without reheater, greater flow, and energy
supply is required to reach the power levels of the turbine for the case
with overheating, and therefore a greater exergetic efficiency of the
system is obtained.

3.2. Results of the traditional exergetic analysis

The exergy destruction for each component of the SORC and Brayton
S-CO2 integrated system with and without reheater was calculated is
presented in Figure 4. The values for the components of the Brayton S-
CO2 cycle are shown in Figure 3a, where there is greater exergy
destruction in the thermal source when Reheater is not used, which
means a relative difference of 92.28% respect to the results obtained
when this component is incorporated.

On the other hand, exergy destruction of approximately 11 kW is
observed for the recuperator heat exchanger, achieving a 1.84% increase
in exergy destruction when Reheater is not used. In addition, it was
observed the zero-exergy destruction value for the secondary turbine
because, in this component, the pressure ratio was not significant when
not using Reheater. Also, the results for the SORC cycle are presented in
Figure 4b, where higher exergy destruction is observed in the heat
exchanger, observing a value of 6.5% higher than the system when not
using Reheater. Similarly, it is inferred that the second component with
the highest exergy destruction is the condenser with a percentage of
15.02% higher when using the Reheater. Thus, these research results
show the existence of system parameters for optimal operation, type of
organic working fluid, type of ORC and Brayton configuration, the value
of temperature pinch in the evaporator and condenser in the ORC, type of
heat exchangers, operational parameters of the Brayton as the high
pressure and temperature, in addition to the size of the other system
components, which are specific to the application studied and motivated
the development of the parametric study presented as follow.

3.3. Energy and exergy parametric study

Table 8 presents the values of the decision variables considered to
develop energy and exergy optimization. These selected values allowed
an appropriate performance in the process.
Value Unit

80 %

75 %

50 �C

15 �C

2.5 -

35 �C

30 -

550 �C

25 MPa

93 %

89 %

95 %

5 �C



Table 6. Thermodynamic properties for S-CO2-SORC system.

State T [K] P [kPa] h [kJ/kg] S [kJ/kg K] _E [kW]

SORC St.16 340.23 4086.31 27.16 0.25 2.31

St.16 f 498.76 4086.31 462.77 1.28 31.41

St.16 g 498.76 4086.31 613.94 1.58 45.50

St.12 530.95 4086.31 745.82 1.84 58.29

St.13 392.70 136.21 599.53 1.94 16.62

St.14 392.70 136.21 599.53 1.94 16.62

St.15 338.15 136.21 511.47 1.69 13.09

Thermal Oil St.9 565.95 101.43 427.43 0.90 66.34

St.9 g 477.94 100.02 236.97 0.58 19.45

St.9 f 447.40 98.55 175.21 0.45 8.91

St.10 420.75 68.15 123.42 0.34 2.58

St.11 420.87 170.38 123.65 0.34 2.60

St.17 317.15 101.30 184.33 0.19 3.33

St.18 328.15 101.30 230.33 0.33 10.37

St.19 330.12 101.30 238.57 0.36 12.03

Brayton S-CO2 St.1 923.15 25000.00 1157939.25 2837.79 621989.00

St.2 851.47 14838.74 1073770.62 2845.26 535595.29

St.3 923.15 14838.74 1162647.92 2945.47 594594.68

St.4 822.63 6956.21 1044993.60 2956.28 473716.27

St.5 468.21 6956.21 637942.14 2311.47 261179.92

St.6 328.65 6956.21 464580.68 1867.04 218061.45

St.7 445.25 25000.00 540232.48 1885.84 288108.24

St.8 758.87 25000.00 951395.57 2591.49 488881.97

Table 7. Exergy analysis results for each component.

System Components φF[kW] φP[kW] φD[kW] φL[kW] φF[kW] φP [kW] φD[kW] φL[kW]

Reheater No Reheater

SORC Heat Exchanger 53.72 33.26 20.46
1

- 47.75 19.13 19.13 -

Pump 1 0.15 0.02 0.12 - 0.16 0.13 0.13 -

Turbine 30.39 25.87 4.51 - 28.42 4.32 4.32 -

Pump 2 0.24 0.19 0.05 - 0.23 0.05 0.05 -

Evaporator 53.75 47.67 6.07 - 47.78 4.17 4.17 -

Condenser 17.47 8.46 9.01 - 15.37 7.65 7.65 -

Brayton S-CO2 Compressor 60.69 55.99 4.69 - 50.41 4.03 4.03 -

Turbine primary 68.85 66.88 1.97 - 142.77 4.48 4.48 -

Turbine secondary 94.65 91.85 2.79 - 0.00 0.00 0.00 -

Recuperator 163.74 152.54 11.20 - 141.28 11.41 11.41 -

Thermal source 53.28 45.79 7.48 - 235.00 97.00 97.00 -
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The effect of the turbine inlet temperature (TIT), recuperator effi-
ciency (εff ), primary turbine efficiency (ηT1), evaporator pinch point
( AP), evaporator pressure (Pevap), and high pressure (PHIGH) on the
overall thermal efficiency and exergy destruction are studied for the
different configurations of the S-CO2-SORC system with and without
superheater, as shown in Figure 5.

The effect of the inlet turbine temperature (TIT) on the global thermal
efficiency and exergy destruction is presented in Figure 4a, where
approximately a constant value of 53% of global efficiency is evidenced
for the system without reheater, and a considerable increase in the global
efficiency is presented for the systemwith reheater, achieving about 58%
at a TIT of 850 �C. On the other hand, the exergy destroyed is conserved in
small values (93 kW) for the system with reheater. However, when using
a reheater, the exergy destroyed increases as the TIT increases, obtaining
a value close to 225 kW. Therefore, it can be deduced from the results
that for the system that does not use a reheater, the efficiency is main-
tained at an attractive value, and the exergy destruction is kept at
7

minimum values, which could facilitate the worldwide implementation
of these systems in a real industrial operational context.

In addition, as the recuperator efficiency (εff ) increases, proportion-
ally increase the overall thermal efficiency and the total exergy
destruction decreases as shown in Figure 4b, where the overall efficiency
without reheater (NRH) is 2.2% lower than the value obtained for the
system with reheater (RH), and the exergy destruction is higher 13.53%
with the use of reheater (RH) at 80% in the recuperator efficiency. These
results show that from an energy point of view, the addition of a reheater
is technical beneficial; however, the addition of a heat exchanger in-
volves the enhancement of the heat transfer irreversibilities that cause
greater exergy destruction. Thus, it is suggested to develop thermo-
economic studies that allow obtaining an optimal configuration and
operation conditions for this integrated thermal generation system.

Also, an increase in the turbine 1 efficiency, which is the primary
turbine of the Brayton cycle, implies and enhancement in the cycle
overall efficiency with reheater, as shown in Figure 5c. Besides, this value



Figure 4. Exergy destruction fraction for each component.

Table 8. Range of decision variables.

Variables Brayton S-CO2-SORC

Symbol Units Minimum Maximum

TIT
�C 500 800

εff % 70 95

ηT1 % 70 95

AP �C 15 35

Pevap MPa 0.45 3.55

PHIGH MPa 20 30

Figure 5. Overall thermal efficiency and total exergy destruction as a function of the (a) turbine inlet temperature, (b) recuperator efficiency, (c) primary turbine
efficiency, (d) evaporator pinch point, (e) evaporator pressure, and (f) high pressure.
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is higher than the results obtained without reheater (NHR), and the
exergy destruction for the systemwith reheater presents a decrease when
the turbine 1 efficiency increase from 70% to 80%. Therefore, the turbine
efficiency is a relevant variable to consider in the energy and exergy
optimization approach and should also be considered in thermo-
economic studies because of the purchase equipment cost, and thermo-
economic indicators of these systems are a function of the power
generated and efficiency.

From the parametric results presented in Figure 5d, where the effect
of the evaporator pinch point (AP) on the overall thermal efficiency and
total exergy destruction is studied, is observed greater efficiency and
equally more significant exergy destruction with the Brayton cycle
operating with reheater (RH). However, it is clear that as AP increases,
exergy destruction decreases for the integrated system with and without
reheater, which directly affects the amount of evaporated organic fluid
available for expansion in the ORC turbine, and the heat transfer area
required for the evaporator. The evaporator pinch point is defined as the
minimum temperature difference between the thermal oil and the
organic working fluid in the evaporator. This value increase at constant
operation parameters of the process leads to an increase in the energy
generated by the integrated system using toluene as the organic working
fluid, which is explained by the thermal proximity between the organic
fluid and the thermal oil.

Figure 5e shows an increase in evaporator pressure (Pevap) that leads
to higher system efficiency when using a reheater, and lower exergy
destruction when not using a reheater, establishing that for a Pevap of
2.25 the overall thermal efficiency is 2.4% lower without the use of a
reheater, and the exergy destruction is 8.6% higher with the use of a
reheater. Thus, these results are due to the fact that the configurations
that use the reheater have lower total exergy losses, with a decrease of
around 10% in the high temperature of the system. In addition, both the
configuration with and without reheating, the highest exergy losses are
presented by the exergy gained by the cooling CO2 and heat transfer in
the heat source, as these are included for the case of configuration with
reheating between 14% and 18% of total losses, while for configurations
without reheating, exergy losses due to exergy gained by air and heat
source are in the range of 12% and 15% of total losses.

Finally, when increasing the high pressure (PHIGH), a small decrease
in overall thermal efficiency was achieved with and without reheating, as
shown in Figure 5f. Also, in the case of exergy destruction, a reduction is
shown when the high pressure is greater than 26 MPa for both cases of
with and without reheating. This is because operation in the compression
and expansion stages occurs at lower pressure ratios, and therefore power
generation is reduced. Thus, this operational parameter plays an
important role in the energy and exergetic optimizations of this type of
integrated system.

3.4. Optimization of the integrated S-CO2 – SORC system with and without
reheater

An analysis of the thermal efficiency (ηth) and exergy destroyed (ED)
behavior for the integrated S-CO2-SORC system was carried out with and
without reheater, taking into account four different numbers of particles,
and 30 iterations, in which the value of the particles and iterations
number that maximizes the thermal efficiency and minimizes the total
exergy destruction are studied. Figure 6 presents the results obtained in
the optimization study with the PSO algorithm.

According to the results presented in Figure 6a, in which a maximi-
zation of the thermal efficiency for the Brayton S-CO2- SORC system
without reheater (NRH) was obtained, the maximum thermal efficiency
of 55.53% is achieved when 19 is the number of iterations, and 25 is set
as the number of particles. Likewise, in Figure 6b, the same analysis is
shown for this case, but with reheater (RH), and it is observed that for a
25 in the number of particles and an iteration value of 11, a maximum
value of efficiency of 56.95% is obtained. These results are quite prom-
ising due to the levels of thermal efficiency achieved allows thinking
9

about a wide application of these systems for energy self-generation in
industrial environments, once their technical and economic feasibility is
evaluated and guaranteed.

On the other hand, it is sought to optimize the system by mean of the
total exergy destruction minimization, as shown in Figure 6c, where it is
observed that the lower value obtained in the total exergy destruction
was 60.72 kW (NRH) with 6 iterations and 15 in the number of particles.
Likewise, for the case presented in Figure 6d, the minimization of total
exergy destruction was obtained at the iteration 6, and 20 in the particle
number, which achieved the lowest the total exergy destruction value in
the system (RH) of 112.06 kW.

The decision variable behavior when the maximum thermal effi-
ciency of 55.53% is obtained for the supercritical CO2 cycle without
reheater, and particle number of 25 (Solution I), is presented in Figure 7.
The decision variables presented are the turbine inlet temperature (TIT),
and the high pressure (PHIGH) in Figure 7a, the recuperator effectiveness
(εff), and the primary turbine efficiency (ηT1) in Figure 7b, the evaporator
pinch point (AP), and the evaporator pressure (Pevap) in Figure 7c. The
same decision variables were studied for the system with reheater and
particle number of 25 from Figure 7d–f (Solution II), where the higher
thermal efficiency of 56.95% was achieved.

Figure 7a shows that the temperature at the turbine inlet increases
steps by step until iteration 8, then the value remains stable at approxi-
mately 800 �C, in parallel with the high pressure (PHIGH) begins to drop
considerably to 20000 kPa. Therefore, the tendency for better system
performance is obtained at higher high inlet turbine temperatures, and
high pressures at medium values in order to have pressure ratios that do
not increase the heat transfer irreversibilities in the compression and
expansion equipment.

In Figure 7b, the effectiveness of the recuperator increases up to an
iteration number of 4 achieving 90%, and in the same way, the turbine
efficiency increased until it stabilized in 92.8% with a number of itera-
tions of 7. This result is due to the nature of the objective functions
considered in the optimization since these by not considering economic
aspects such as the purchase equipment cost assigns the efficiencies of
these devices to the upper limit considered in the PSO optimization.

From the results presented for the AP and Pevap as shown in Figure 7c,
it is observed that the two variables show a decrease in the first iterations
and then increase step by step, giving rise to a stabilization in the
evaporator pinch point in 35 �C, and in the evaporator pressure is 2.9
MPa. The initial behavior of these variables is due to the need to have an
evaporator pinch point as low as possible at low turbine inlet tempera-
tures, to achieve the best possible thermal performance of the integrated
system.

Then, the analysis for the system with superheat (RH) is shown in
Figure 7d, where the temperature at the turbine inlet considerably in-
creases until iteration 10 at a temperature of 800 �C, then the value re-
mains stable, while the high pressure (PHIGH) begins to increase in the
first iterations up to 25000 kPa, then decreases until iteration 13 where a
pressure of 20000 kPa is stabilized, which is a similar result to the ob-
tained with the NHR system. Therefore, the most important variable in
the thermal performance of an integrated supercritical CO2 Brayton –

ORC system is the temperature and pressure reached by the CO2 at the
inlet turbine. Thus, additional research should be done on more efficient
printed circuit heat exchange systems that do not generate so many heat
transfer irreversibilities. Besides, in Figure 6e, f it is evidenced by the
same behavior presented by the NHR.

The decision variable behavior in the analysis of the integrated su-
percritical CO2 cycle without reheater and ORC for the number of par-
ticles in 15 that achieved the lowest exergy destruction with 60.72 kW
(result presented in Figure 6c) is related to the solution III and presented
from Figure 8a–c, while the Solution IV presented from Figure 8d–f is
related to the integrated system with reheater for the number particles of
20 to achieve the lower exergy destruction with 112.06 kW (result pre-
sented in Figure 6d).



Figure 6. Respond of the thermal efficiency and exergy destroyed with the number of iterations and particles of a Brayton S-CO2- SORC combined system with and
without reheat for (a) Maximum efficiency without reheat, (b) Maximum efficiency with reheat, (c) Minimum exergy destruction without reheat, and (d) Minimum
exergy destruction with reheat.

Figure 7. Decision variables for a particle number of 25 in the system without reheater (NRH) (a) TIT and PHIGH, (b) εff and ηT1, (c) AP and Pevap, system with reheater
(RH) (d) TIT and PHIGH, (e) εff and ηT1, (f) AP and Pevap as a function of the number of iterations.
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For solution III as shown in Figure 8a, it is observed that stabilization
was achieved at a lower iteration number compared to the solution I
(Figure 7a) where the turbine inlet temperature (TIT) decreases consid-
erably at 500 �C, and the high pressure (PHIGH) increases to 30000 kPa at
an iteration of 5. Therefore, when the optimization method considers the
total exergy destruction as an objective function, the PSO method spends
fewer iterations to reach convergence and optimal values.
10
For the case of Figure 8b, it is observed that the efficiency of the
recuperator suddenly increases to 90% at an iteration of 2. Similarly, the
efficiency of the turbine at an iteration of 8 stabilized at a value of 90%.
On the other hand, an oscillatory behavior was reflected in the AP
variable presented in Figure 8c, in which it was not possible to reach a
stable value. However, in the iteration of 27 a small AP oscillation is
observed between 16.0 �C and 16.2 �C, and in the case of the evaporator
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pressure, it remains stable at the iteration value of 4 to a value of 0.46
MPa.

In Table 9, four solutions are presented according to the simulations
results presented related to the operating conditions of the Brayton S-
CO2-SORC integrated system. A comparative study was carried out be-
tween the solutions to obtain maximum thermal efficiency for the
Brayton system with (Solution II) and without Reheater (Solution I).
Also, the comparative study for the minimization exergy destruction
problem was considered with (Solution IV) and without Reheater (So-
lution III) in the Brayton system. The maximum power (234.72 kW) was
obtained when the thermal efficiency with Reheater is maximum, which
approximately doubles the power obtained while the exergy destruction
in the system is minimized. Therefore, considering that the technical and
economic viability of these systems is reached with the greater produc-
tion of energy, it is suggested to orient the technological efforts in
increasing the thermal performance of the integrated thermal system in
the first instance and then to identify the components that have more
opportunities of exergetic improvement due to the high heat transfer
irreversibilities that occur in this equipment.

The main contribution of this research is to find opportunities for
improvement through genetic algorithm optimizations using exergetic
analysis as an input variable by changing the operating conditions of the
thermal cycle. However, it is recommended to implement thermo-
economic analyses to expand the range of the study and find more var-
iables of opportunity, using indicators such as the LCOE and focusing on
variables based on exergy analysis [41]. The inclusion of these
thermo-economic indicators in the objective variables will allow
obtaining a Brayton S-CO2-SORC thermal generation system optimized
thermo-economically in real operation contexts, where the ORC behaves
as a glue cycle that favors the technical and economic viability for its
commercial application. This viability is due to the use of residual heat
from the Brayton S-CO2 cycle, since the availability of energy contained
in the CO2, and the amount of additional energy that could be generated
with the use of ORC without additional fuel consumption, provide the
opportunity to reduce energy costs of generation, achieve shorter
payback periods and reduce environmental impacts associated with the
system [41].

Furthermore, it is recommended to use environment variables, which
can be taken frommethodologies based on Eco-99method such as the life
cycle analysis (LCA), methodologies with exergetic analysis such as
Figure 8. Distribution of decision variables for a particle number of 15 (NRH) (a) TIT
and PHIGH (e) εff and ηT1 (f) AP and Pevap as a function of the number of iterations.
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traditional and advanced exergetic-environmental analysis. Theses
methodologies allow to evaluate and describe the thermodynamic
properties, the energy duty of the equipment, and the improvements
potential of the components from a thermodynamics second law point of
view, including the potential environmental impact in all the LCA phase,
which are the construction, operation and decommissioning of the
system.

3.5. Comparative performance of different swarm intelligence algorithms

A complementary analysis of the thermal efficiency and exergy
destruction behavior is performed for the integrated S-CO2-SORC system
considering the reheater and without it. For this, the RPS and GA algo-
rithms were taken into account from the swarm intelligence algorithms,
with the parametric conditions proposed in Tables 2 and 3, respectively.
Also, the results presented in Figure 5 for the PSO algorithm was
considered for the number of iterations 30. This analysis is based on the
results of Figure 6 and takes the same operating conditions: maximizing
thermal efficiency and minimizing exergy destruction in the three algo-
rithms presented and observing their convergence with respect to the
iterations proposed. The results obtained from this analysis are presented
in Figure 9.

According to the results shown in Figure 9, the maximum thermal
efficiency that can be achieved in a system with a reheater (Figure 9a)
and without a reheater (Figure 9b) was evaluated, as well as the mini-
mum value in the exergy destruction with (Figure 9c) and without
(Figure 9d) reheater. In Figure 9a a maximum thermal efficiency of the
system with reheater of 56.95% was obtained in iteration number 19 for
the PSO algorithm, which was shown to have the faster convergence and
stability, respect to the RPS and GA algorithms, which reached a thermal
efficiency value of 55.95% and 54.45%, respectively. These results are
due to the rapid convergence of the PSO algorithm, compared with the
other global optimization algorithms, such as GA and RPS, in addition to
its easy implementation, simplicity in its optimization strategy, and it is
the most efficient global search algorithm among those studied with the
best computational efficiency.

The maximum thermal efficiency of 55.53% for the PSO algorithm
was obtained for the thermal system with reheat, as shown in Figure 9b,
54.53% for the RPS algorithm, and 53.09% for the GA algorithm. This
shows the good performance of the PSO algorithm in thermal system
and PHIGH (b) εff and ηT1 (c) AP and Pevap and a particle number of 20 (RH) (d) TIT



Table 9. Thermal optimization solution in the Brayton S-CO2-SORC.

Parameter Optimized Value

Symbol Unit Solution I (NRH) Solution II (RH) Solution III (NRH) Solution IV (RH)

Maximize thermal efficiency Minimize exergy destruction

TIT
�C 800.00 800.00 500.21 500.23

PHIGH kPa 20000.00 20000.31 30000 27781.70

εff % 0.9 0.9 0.9 0.9

ηT1 % 0.93 0.93 0.93 0.93

AP �C 35 35 16.20 23.27

Pevap MPa 2.92 3.55 0.45 0.45

Δηther % 28.26 27.34 26.40 26.85

ηI,SORC % 21.03 21.44 15.08 14.94

ηI; Brayton S�CO2 % 43.29 44.72 33.71 34.56

ηth,overall % 55.53 56.95 42.61 43.84

ED kW 62.04 121.47 60.72 112.06

ẇnet kW 200.87 234.72 109.34 116.46

Figure 9. Optimization result with the three swarm intelligence algorithms for (a) Maximum efficiency without reheat, (b) Maximum efficiency with reheat, (c)
Minimum exergy destruction without reheat, and (d) Minimum exergy destruction with reheat.
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optimization, which is promising for implementation in self-generated
energy applications, and that it is the right algorithm to use in those
environments due to its local convergence. Additionally, the deviation of
the RPS algorithm can be explained by the facility of this algorithm to fall
into optimal local values within the high dimensional search space, and
the comparatively low convergence ratio in the iterative optimization
process developed in the energy efficiency maximization, regardless of
whether the system has reheater.

On the other hand, in Figure 9c are shown the minimum value of
exergy destruction for the PSO algorithm (112.95 kW) without reheat,
RPS algorithm (132.72 kW), and GA algorithm (139.73 kW), while in
Figure 9d, it is shown that the minimum exergy destruction obtained
with the PSO algorithm (114.88 kW), RPS algorithm (131.37 kW), and
GA algorithm (135.73 kW). In these processes of exergy destruction
minimization, better results can be obtained for the GA algorithm by
12
extending the population size, but in this study, due to its computational
implementation, a finite equal size (30) has been limited for the three
methods. In addition, it is demonstrated that with the use of an incorrect
objective function in these problems, it is possible that the algorithm is
not able to find a correct solution to the problem or the best-operating
conditions of the system in terms of energy or exergy approach.

In this case, the same result is presented for Figure 9a, b, where the
PSO algorithm is shown to have the best performance reaching the
optimal value in iteration number 3. For this reason, it is recommended
to opt for the PSO, which has had greater acceptance due to its easy
algorithmic implementation among the optimization strategies studied,
despite the fact that both (PSO and GA) were proposed by almost a year.

Once the comparisons between the algorithms were made, the per-
formance indicators were evaluated, with the aim of showing which is
the ideal algorithm for the integrated S-CO2-SORC system. Three
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indicators were evaluated, as shown in Figure 10, for the cases of
maximizing the energy efficiency and minimizing the exergy destruction
with and without reheater: Elapsed Time (Figure 10a and 10b), RMSE
(Figures 10c, d) and Diversity (Figure 10e,f).

For Figure 10a, it is shown that for the algorithms evaluated with
reheater, the elapsed time takes values of more than thousands above the
values of elapsed time without reheater, this shows that the inclusion of
reheater in the algorithm considerably affects the response time for
obtaining computational results, which is a consequence of the compu-
tational algorithm loop and thermal system complexity. Similarly,
Figure 10b shows that the response time of the PSO algorithm is reduced
for both the integrated system and the integrated system without
reheater in comparison with the other algorithms evaluated, which is
favorable for the evaluation of exergy destruction reduction.

Also, the results of root mean square error performance indicator is
shown in Figure 10c for the three algorithms evaluated, where it is
observed that the GA algorithm is the one that reduces the least its value
with respect to the other algorithms studied, so this algorithm should not
be used for energy and exergetic optimization problems of S-CO2-ORC
thermal systems since in addition to consuming significant computa-
tional time in its execution and computational power, reaches values
with higher mean square errors than alternatives such as PSO and RPS.

Figure 10d shows that the highest RMSE reduction is observed in the
PSO algorithm for the integrated system without reheater, which is
shown as the favorable optimization algorithm option due to the fulfill-
ment of the objective for this thermal case study. In addition, Figure 10e
shows the PSO algorithm for evaluation with reheater with the least di-
versity value among the remaining algorithms, showing it as a strong
candidate for the ideal algorithm for the solution of the case. This result is
due to the PSO is a blind search method, which is only guided by the
selected fitness function, and the particle swarm operators are indepen-
dent of the selected problem, thus making them general and indifferent
to whether the Brayton system has a reheater or not integrated to the
ORC.

Figure 10f shows the diversity for the case of minimum exergy
reduction between the three algorithms with reheater and without
reheater, where the algorithms behave similarly, with the highest di-
versity for the algorithms implemented to problems without reheater.
Figure 10. Performance indicator responds for Elapsed time (a) maximum efficie
minimum exergy destruction, for Diversity (e) maximum efficiency, and (f) minimu
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However, these results are due to the algorithm computational structure
since in this study, parameters were selected that guarantee the diversity
of the population to have a high representation in the search space and
avoid premature convergence in the search for a better energetic and
exegetic performance of the integrated system.

To complete the analysis, Figure 11 shows the maximum, minimum,
and average values of each performance indicator for the PSO, RPS, and
GA algorithms evaluated in the Brayton S-CO2- SORC combined system
with reheater and without reheater.

In Figure 11a, it is shown that the minimum elapsed times between
the algorithms were obtained by the PSO without reheater (50.12 s) and
RPS without reheater (85.12 s) algorithms. Also, in Figure 11b it is shown
as the GA algorithm presented the highest elapsed time values as a
consequence of the high complexity of the problem, presenting minimum
considering the reheater of 103.13 s, maximum of 1551.64 s, and average
3049.9 s. Figure 11d shows the RMSE values for the studied algorithms,
presenting the lowest values for the PSO NRH algorithm, where mini-
mum (0.56), and maximum (0.99) values were obtained. Figure 11f
presents values for diversity, where the lowest values were presented for
PSO NRH, with a minimum value of 0.10. Therefore, a possible solution
for the high complexity problem involved in the optimization of these
integrated energy systems may be the use of distributed computer sys-
tems, where it is possible to run intelligent swarm algorithms in parallel,
where each processing unit can operate in an isolated population of
particles, and the best individuals from each isolated population are run
in other computer units. This alternative will allow the development of
studies of greater complexity, such as the thermo-economic optimiza-
tions of these thermal systems that require more computational
resources.

3.6. Statistical test

From Tables 10, 11, and 12, the Z values for the statistical test per-
formed is presented for the three optimization algorithms, determining
the significance of the proposed mean comparison test, where "S" means
that evidence of a significance is found and the null hypothesis must be
rejected, while "NS" means that some evidence of significance has not
been found and the null hypothesis must be accepted. These tables take
ncy, (b) minimum exergy destruction, for RMSE (c) maximum efficiency, (d)
m exergy destruction.



Figure 11. Maximum, minimum and average values of each performance indicator for the PSO, RPS, and GA for (a) Elapsed time for the maximum efficiency, (b)
Elapsed time for the minimum exergy destruction, (c) RMSE for maximum efficiency, (d) RMSE for the minimum exergy destruction, (e) Diversity for the maximum
efficiency, and (f) Diversity for the minimum exergy destruction.
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the algorithm and performance indicator depending on the optimization
objective, and each method studied in this thermal configuration.

The hypotheses proposed in this statistical test are presented as
follow:

Ho: The mean obtained in the performance indicator (Elapsed time/
Diversity/RMSE) using the (PSO/RPS/GA) algorithm for the (maxi-
mizing the thermal efficiency/minimizing the exergy destruction) prob-
lem in the Brayton S-CO2-ORC integrated system without reheater and
with reheater is statistically equal. Ha: The mean obtained in the per-
formance indicator (Elapsed time/Diversity/RMSE) using the (PSO/RPS/
GA) algorithm for the (maximizing the thermal efficiency/minimizing
the exergy destruction) problem in the Brayton S-CO2-ORC integrated
system without reheater and with reheater is statistically different.

The statistical test results show that in most cases, there is a signifi-
cative difference with a confidence level of 95%, with the PSO optimi-
zation result different in five tests, which imply to reject the null
hypothesis. The least relevance was the GA algorithm, presenting similar
results for the performance indicator, including the reheater in the sys-
tem, mainly for the Diversity and RMSE tests.

4. Conclusions

It was verified that the PSO metaheuristic algorithm has the po-
tential to be used in the optimization of several objective non-linear
functions subject to equality or inequality constraints, among which
Table 10. Results for the statistical test for the PSO optimization algorithm.

Performance Indicator μ1

Elapsed Time Min ED S-CO2
NRH

Max η S-CO2
NRH

Diversity Min ED S-CO2
NRH

Max η S-CO2
NRH

RMSE Min ED S-CO2
NRH

Max η S-CO2
NRH

14
are included the problems of energy and exergetic optimization of the
integrated S-CO2-SORC power generation systems. The PSO, for the
cases studied, gave an approximate answer that satisfies the optimiza-
tion needs and contributes to solving nonlinearity problems present in
most engineering and scientific applications. If a very high precision
response is required, regardless of the required computational costs, a
deterministic method is an appropriate choice for the target functions
studied in this paper.

The results obtained in the present investigation allowed to observe
that during the maximization of the thermal efficiency in the S-CO2-
SORC system, a value of 56.95%was reached with the use of reheater for
a number of particles of 25. Likewise, when deactivating the use of the
reheater in the system, the efficiency decreases, reaching a maximum
thermal efficiency of 55.53% at the same number of particles with the
PSO algorithm, so a 1.42% improvement is obtained when using reheater
in a Brayton supercritical CO2 cycle.

In the case of minimizing exergy destruction, the integrated S-CO2-
SORC system without reheater to a particle number of 15 showed a
considerable decrease to a value of 60.72 kW; otherwise, it is presented in
the system when using the reheater where an increase of 112.06 kW is
seen. Thus, it is suggested to use the system without reheating when a
good exergetic performance of the integrated system with an ORC is
preferred.

The optimizations developed for the integrated S-CO2-SORC system
allowed to obtain favorable energy indicators of the system when using
μ2 Zvalue Evidence

Min ED S-CO2
RH 27.10 S

Max η S-CO2
RH 286.79 S

Min ED S-CO2
RH 9,40 S

Max η S-CO2
RH -1.50 NS

Min ED S-CO2
RH 32.74 S

Max η S-CO2
RH 5.25 S



Table 11. Results for the statistical test for the RPS optimization algorithm.

Performance Indicator μ1 μ2 Zvalue Evidence

Elapsed Time Min ED S-CO2
NRH Min ED S-CO2

RH 45.43 S

Max η S-CO2
NRH Max η S-CO2

RH 278.58 S

Diversity Min ED S-CO2
NRH Min ED S-CO2

RH 6.08 S

Max η S-CO2
NRH Max η S-CO2

RH -1.79 NS

RMSE Min ED S-CO2
NRH Min ED S-CO2

RH 20.00 S

Max η S-CO2
NRH Max η S-CO2

RH -5.21 NS

Table 12. Results for the statistical test for the GA optimization algorithm.

Performance Indicator μ1 μ2 Zvalue Evidence

Elapsed Time Min ED S-CO2
NRH Min ED S-CO2

RH 34.65 S

Max η S-CO2
NRH Max η S-CO2

RH 313.73 S

Diversity Min ED S-CO2
NRH Min ED S-CO2

RH -0.26 NS

Max η S-CO2
NRH Max η S-CO2

RH -1.38 NS

RMSE Min ED S-CO2
NRH Min ED S-CO2

RH -0.83 NS

Max η S-CO2
NRH Max η S-CO2

RH -3.90 NS
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reheater and to select thermal efficiency as the objective function in the
optimization approach. The study allowed to obtain promising energy
indicators such as the thermal efficiency of the Brayton (44.72%), the
thermal efficiency of the SORC cycle (21.44%), and the overall effi-
ciency of integrated system Brayton S-CO2 - SORC (56.95%), which is a
consequence of the reheater and the waste heat recovery in the heat
exchanger of the organic Rankine cycle. However, in exergetic terms,
this configuration is not the best option because it has heat transfer ir-
reversibilities; so, the total exergy destroyed of 121.47 kW was the
highest presented.

It is recommended as future work to include thermo-economic and
environmental variables to increase the opportunities for improvement
of the input variables and components of the system from the irre-
versibilities of the components and environmental impacts.

A comparative analysis of the swarm intelligence algorithms response
was presented using a statistical z-test for the Elapsed time, Diversity, and
RMSE as a performance indicator to maximize the energy efficiency and
to minimize the exergy destruction with and without the rehear in
Brayton system integrated to the ORC as bottoming cycle. The PSO
optimization algorithm was evidenced by the best performance, and it is
suggested in these applications based on the behavior of the swarming
characteristics of the population.

Although both GA, RPS, and PSO are in the group of optimization
algorithms are an important part of intelligent algorithms, they have
some disadvantages that do not allow it to be applied to any optimization
problem with an error ratio, diversity, and computational resource. To
overcome these limitations, it is suggested to study the performance of
algorithms based on the combination of both PSO and RPS with GA, in
order to increase their overall performance. The combination of these
optimization algorithms implies the development of an integrated algo-
rithm with a high practical component, that works with a high degree of
parallelism, where each particle is processed individually which makes
possible the use of computers in parallel and the possibility of having
more complex objective functions of thermo-economic and environ-
mental character.
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