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Abstract. We study the relationships between the spectra derived from Fredholm the-
ory corresponding to two given bounded linear operators acting on the same space. The
main goal of this paper is to obtain sufficient conditions for which the spectra derived
from Fredholm theory and other parts of the spectra corresponding to two given operators
are preserved. As an application of our results, we give conditions for which the above
mentioned spectra corresponding to two multiplication operators acting on the space of
functions of bounded p-variation in Wiener’s sense coincide. Additional illustrative results
are given too.
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1. INTRODUCTION

In [5], Barnes studied the relationship between the spectral and Fredholm prop-
erties of an operator and the Fredholm properties of its extensions to certain su-
perspaces, assuming some special conditions on the ranges. In [6], the same au-
thor studied the transmission of some properties from a bounded linear operator, as
closedness of range and generalized inverses, to its restriction on certain subspaces
and vice-versa. On the other hand, it is well known that, if two operators are similar
(see [1]) then their spectra are equals, and that this equality extends to several finer
structures of the spectra as point spectra, approximate point spectrum, Fredholm
points, etc. Motivated by these researches, in this paper we continue investigat-
ing the behavior of several spectra derived from the classical Fredholm theory for
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an operator T and its restriction Ty on a proper closed and T-invariant subspace
W C X such that 7"(X) C W for some n > 1, where ' € L(X) and X is an
infinite-dimensional complex Banach space. The main goal of this paper is to study
the relationship between the spectra derived from Fredholm theory corresponding
to T and Ty, in order to obtain sufficient conditions for which the spectra derived
from Fredholm theory and other parts of the spectra corresponding to two given op-
erators are preserved. As an application of our results, we give conditions for which
the above mentioned spectra corresponding to two multiplication operators acting
on the space of functions of bounded p-variation in Wiener’s sense coincide. Some
additional illustrative results are given too.

2. PRELIMINARIES
Throughout this paper L(X) denotes the algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X. The classes of operators
studied in the classical Fredholm theory generate several spectra associated with an
operator T € L(X). The Fredholm spectrum is defined by
o¢(T) ={\ € C: M\ — T is not Fredholm},
the upper semi-Fredholm spectrum is defined by
out(T) = {X € C: A\ —T is not upper semi-Fredholm},
and the lower semi-Fredholm spectrum is defined by
oi¢(T) = {A € C: Al —T is not lower semi-Fredholm}.
The Browder spectrum and the Weyl spectrum are defined, respectively, by

op(T) = {X € C: AI — T is not Browder},

and
ow(T)={A € C: M —T is not Weyl}.

Since every Browder operator is Weyl, ow(T) C op(T). Analogously, the upper
semi-Browder spectrum and the upper semi- Weyl spectrum are defined by

oub(T) = {\ € C: A\ — T is not upper semi-Browder},
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and
ouw(T) ={A € C: A\ —T is not upper semi-Weyl}.

Similarly, the lower semi-Browder spectrum and the lower semi- Weyl spectrum are
defined by

o (T) = {A € C: AI — T is not lower semi-Browder},

and
ow(T) ={A € C: M —T is not lower semi-Weyl}.

For further information on Fredholm operators theory, we refer to [1] and [11].
Another important class of operators is the quasi-Fredholm operators defined in
the sequel. First, we consider the set

A(T)={neN: mz2znmeN=T"(X)NN(T)CT™(X)NN(T)}.

The degree of stable iteration is defined as dis(T') = inf A(T) if A(T) # 0, while
dis(T) = oo if A(T) = 0.

Definition 2.1. An operator T' € L(X) is said to be quasi-Fredholm of degree d,
if there exists d € N such that:
(a) dis(T") =d,
(b) T™(X) is a closed subspace of X for each n > d,
(¢) T(X)+ N(T9) is a closed subspace of X.

For further information on quasi-Fredholm operators, we refer to [2], [3], [7] and [8].

Definition 2.2 ([10]). An operator T' € L(X) is said to have the single valued
extension property at Ao € C (abbreviated, SVEP at )\g), if for every open disc
Dy, C C centered at Ao the only analytic function f: Dy, — X which satisfies the
equation

MN-=T)f(N) =0 VAeD,,

is the function f = 0 on Dy,. The operator T is said to have SVEP if T has the
SVEP at every point A € C.

Evidently, T € L(X) has SVEP at every point of the resolvent o(T) = C\ o(T).
Also, the SVEP is inherited by restrictions on invariant closed subspaces. Moreover,
from the identity theorem for analytic functions it is easily seen that 7" has SVEP
at every point of the boundary do(T') of the spectrum. In particular, 7" has SVEP
at every isolated point of the spectrum. Note that (see [1], Theorem 3.8)

(1) p(Al —T) < oo = T has SVEP at A,
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and dually
(2) g(AI = T) < oo = T* has SVEP at \.

Recall that T' € L(X) is said to be bounded below if T is injective and has closed
range. Denote by 0, (T') the classical approzimate point spectrum defined by

oap(T) = {A € C: A\I — T is not bounded below}.
Note that if oy, (T") denotes the surjectivity spectrum
osu(T) = {A € C: A\ —T is not onto},

then 0ap(T') = osu(T7), 0su(T) = 0ap(T™) and o(T') = 0ap(T) U 0su(T).
It is easily seen from the definition of localized SVEP that

(3) A ¢ accoap(T) = T has SVEP at A,
and
(4) A ¢ accogy(T) = T* has SVEP at A,

where acc K means the set of all accumulation points of a subset K C C.

Remark 2.3. The implications (1), (2), (3) and (4) are actually equivalences,
if T € L(X) is semi-Fredholm (see [1], Chapter 3). More generally, if T' € L(X) is
quasi-Fredholm (see [2]). On the other hand, o,(T) = ow(T) Uacco(T), ouw(T) =
ouw (T) Uaccoqy(T) and 0(T) = 0a4p(T) UE(T'), where Z(T") denotes the set {\ € C:
T does not have SVEP at A} (see [1], Chapter 3).

According to the notation of Barnes [6], in the sequel of this paper we always
assume that W is a proper closed subspace of a Banach space X. Also, we denote

PX,W)={T € L(X): T(W)CW and for some integer n > 1, T"(X) C W}.

For each T' € P(X,W), Tw denotes the restriction of 7" on the T-invariant sub-
space W of X. Observe that 0 € 04, (T) for all T € P(X,W). Because, T € P(X, W)
and T onto implies that X = T™(X) C W for some n > 1, contradicting our assump-
tion that W is a proper subspace of X. Later we shall see that 0,(T) and og,(Tw)
may differ only in 0.
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Remark 2.4. Observe that an operator F' € L(WW) with n-dimensional range
has the form F(w) = Z fr(w)F (wy), where F(wy) € W and f, € W* (IW* denotes

the dual space of W) for k=1,...,n. By the Hahn-Banach Theorem, each f, € W*
has an extension fj, € X* (X* denotes the dual space of X), then F has an extension

F € L(X), with finite-dimensional range, given by F(z) = Z fr(2)F(wy) for all
z€X. Also, F e P(X,W) and Fyy = F.
We end this section by stating the following lemmas which were proved in [6].

Lemma 2.5 ([6], Proposition 3). Let T € P(X,W). Then (\I — T)"*(W) =W
for all A # 0.

Lemma 2.6 ([6], Theorem 6 (1)). Let T' € P(X,W). Then for all A # 0, we have

R(M —T) is closed in X if and only if R(A — Tw ) is closed in W.

3. BASIC RELATIONS BETWEEN THE SPECTRA OF 1" AND Ty

In this section, we establish several lemmas that will be used throughout this paper.
These lemmas describe some important relations between an operator T' € P(X, W)
and its restriction Ty .

We begin by extending the basic equality N(A —T) =T (N(A —T)) for A # 0,
as follow.

Lemma 3.1. Let T € L(X). Then N((AI —=T)™) = T*"(N((M —T)™)) for all
A # 0 and any n,m € N.

Proof. It follows by mathematical induction. O

The next lemma is a generalization of [9], Lemma 2.1, but in the framework dealt
with by Barnes in [6].

Lemma 3.2. If T € P(X,W), then for all A # 0:
(i) N((M —=Tw)™) = N((M —T)™) for any m,

(if) R((AI — TW) )=R(MN —T)™)NW for any m,

(iii)

)

)

a(Al = Tw) = a(M = T),
(iv) p(AI = Tw) =p(AI =T),
(v) BN —Tw) =B\ —T).
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Proof. The proofis similar to that of [9], Lemma 2.1, making use of Lemma 3.1
in part (i) and Lemma 2.5 in part (ii). O

Moreover, we have the following equivalences.

Lemma 3.3. If T € P(X,W), then:

(i) p(T) < oo if and only if p(Tw) < oo,
(if) ¢(T") < oo if and only if ¢(Tw) < 0.

Proof. (i) Since Ty is a restriction of T on the subspace T-invariant W of X,
then N(T,) = N(T*)n'W for all k € N. In consequence, p(T) < oo implies
that p(Tw) < oo. Reciprocally, by [11], Proposition 38.1, p(Ty) < oo implies that
T (W) N N(TE) = {0} for every integer m > p(Tw ) and every natural number k.
Also, if T € P(X, W) there exists n > 1 such that 7"(X) C W. Hence T""™(X) C
T™(W) C W for all m € N, thus

{0} ST™™(X)NN(T*) CT™(W)NW NN(T*) = Ti(W) N N(Tg,) = {0}.

Therefore 7™ (X) N N(T*) = {0} for any m,k € N. Again, by [11], Proposi-
tion 38.1, p(T) < m+n < oo.
(ii) As observed in (i), 7"t (X) C T™ (W) for all m € N. Then

TR (W) = TE) € TTEX) © TT(W) = TR(W) € T7(X)

for all m € N, from which we deduce that ¢(T) < oo if and only if ¢(Tw) < c0. O

In the same style as in the Lemma 2.6, the following result treats the relationship
between the SVEP of an operator T € P(X, W) and its restriction Tyy .

Lemma 3.4. If T € P(X,W), then T has SVEP at X if and only if Ty has
SVEP at A.

Proof. It is easy to see that T, respectively, Ty has the SVEP at A if and only
if A\I — T, respectively, A\I — Ty has the SVEP at 0. Thus, we may assume without
loss of generality A = 0. Since the SVEP is inherited by restrictions on invariant
closed subspaces, if T" has the SVEP at 0 then Ty has the SVEP at 0. Reciprocally,
suppose that Ty has the SVEP at 0 and let us consider an open disc Dy C C centered
at 0 and an analytic function f: Dy — X such that (uI —T)f(p) =0 for all p € Dy.
This implies that u* f(1u) = T* f(u) for all k € N. Consequently, since T' € P(X, W),
there exists n > 1 such that T7"(X) C W and so f(u) = p "T"f(n) e T"(X) C W
for all o € Dy \ {0}. On the other hand, if 1 = 0 there exists a sequence (A;)72; C Dy
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such that Ay # 0 and A\, — 0. Hence, (f(Ax))72; € W and f(Ax) — f(0). Being W
a closed subspace, we conclude that f(0) € W. Therefore f: Dy — W is an analytic
function such that (uf —Tw)f(u) = 0 for every pu € Dg. From this, by the assumption
that Ty has the SVEP at 0, we deduce that f = 0 on Dy and therefore T has the
SVEP at 0. O

4. MAIN RESULTS AND APPLICATIONS

In this section we present the main results and applications of this paper. We give
sufficient conditions for the spectra derived from the Fredholm theory and other parts
of the spectra corresponding to two given operators to be preserved. Applications
to multiplication operators acting on the space of functions of bounded p-variation
in Wiener’s sense are given. Additional illustrative results are given too.

The following result treats the spectral relationships between the operator T €
P(X,W) and its restriction Ty for several spectra derived from the classical Fred-
holm theory.

Theorem 4.1. If T € P(X,W) and ¢(T) = oo, or p(T') = oo, then the following
equalities are true:

(1) osu(T) = osu(Tw);
Oap(T) = oap(Tw);
o(T) =o(Tw);
ow(T) = ow(Tw);
(V) ouw(T) = ouw(Tw);

(i)
)
)
)
(vi) on(T) = on(Tw);
i)
) o
x)

(iii

(iv

(vii) ouwn(T) = oun(Tw);
(viii) o¢(T) = o¢(Tw);
( qu( ) = qu(TW)-

Proof. (i) Observe first that A\I — T, respectively, A\I — Ty is onto if and only
if (A —T) =0, respectively, (Al — Tw) = 0. Now, by Lemma 3.2, (A —T) =
B(AI — Ty ) for all X\ # 0, and then o4 (T) \ {0} = osu(Tw) \ {0}. To show the
equality oy (T) = 0su(Tw) we need only to prove that 0 € o5, (T) N osu(Tw ). Since
T e P(X,W), 0 € oeu(T). We claim that 0 € o5, (Tw). To see this, suppose that
0 ¢ osu(Tw). Then Ty is onto, thus W = (Tw)*(W) = T*(W) for k = 0,1,2,...
Being T' € P(X, W), there exist n > 1 such that T"(X) C W, then W = T™(W) C
T™(X) CT"(X) C W for all m > n. Therefore T"(X) =T"(X) =T"(W) =W
for all m > n, which implies that ¢(7) < oo, contradicting our assumption that
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q(T) = 0o. On the other hand, Ty onto implies that ¢(Tw) = 0, and so (T)* has
the SVEP at 0. Hence, 0 ¢ Z((Tw)*). From this,

0 ¢ ou(Tw) UE((Tw)") = o((Tw)") = o(Tw) = ap(Tw) UE(Tw).

Consequently 0 ¢ Z(Tw ), that is, Ty has the SVEP at 0. Since T' € P(X, W), by
Lemma 3.4, T has the SVEP at 0. But, as observed above, T € P(X, W) implies
that there exists n > 1 such that 7™ (X) = T™(W) = W for all m > n. Then,
by the isomorphism T*(X)/T*1(X) = X/N(T*) + T(X) (for all k € N), given by
Tk +TFY(X) — 2+ (N(T*) + T(X)), we conclude that X = N(T™) + T(X) for
all m > n. Also dis(T") = inf A(T) < n, because T (X)NN(T) =T™(X)NN(T) for
all m > n. Thus, T is a quasi-Fredholm operator and T" has the SVEP at 0. By [2],
Theorem. 2.7, p(T) < oo, contradicting our assumption that p(7T') = oco.

(ii) Note first that for each A € 0,,(T) \ {0}, AI — T is not bounded below and
A # 0. Therefore, we have the following possibilities: p(Al —T) > 0 or R(A[ — T)
is not closed in X. But, by Lemmas 3.2 and 2.6, these possibilities are equivalent to
p(M—Tw) > 0or R(AI—Tyw) is not closed in W. Hence 0., (T)\{0} = 0ap(Tw)\{0}.
As in part (i), for the equality oap(T) = cap(Tw), it suffices to show that 0 €
Oap(T) Noap(Tw). Suppose that 0 ¢ o, (T') then T is injective. Consequently T' has
SVEP at 0, then 0 ¢ E(T). But, since 0ap(T) UE(T) = 0(T') = 0ap(T) U osu(T), we
have that 0 ¢ o4, (T), a contradiction. Therefore 0 € 0,,(T). Similarly, 0 ¢ oap(Tw)
implies Ty injective. Thus, Ty has SVEP at 0 and 0 ¢ Z(Tw). Again, since
oap(Tw) UE(Tw) = 0(Tw) = dap(Tw) U osu(Tw ), we have that 0 ¢ o5, (Tw). By
part (i), 0 ¢ o5 (T"), and as observed above this is impossible. Then 0 € o, (Tw),
so the equality o,p(T") = 0ap(Tw) holds.

(iii) To show the equality o(T") = o(Tw ), observe that o(T') = 0ap(T)Uosu(T) (or
o(Tw) = 0ap(Tw) U 0su(Tw)). Hence, combining these equalities with (i) and (ii),
we obtain that o(T") = o(Tw).

(iv) Proceeding as in the first part of proofs (i) and (ii), by Lemmas 3.2 and 2.6,
we see that o¢(T) \ {0} = o¢(Tw) \ {0} and 0w (T) \ {0} = 0w (Tw) \ {0}. Again,
as in parts (i) and (ii), for the equality oy (T) = ow(Tw) it suffices to show that
0 € 0w (T) N ow(Tw). Note first that, if 0 ¢ o (T") then T is a Weyl operator. That
is, T is a Fredholm operator with ind(7") = 0. Being T' € P(X, W), there exists
n > 1 such that 7"(X) C W, from which we obtain the inclusions

T(X)CT™"(W)CWCX VYmeN,
and so the inequalities

. . w m
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Since W/T"+t™(X) C X/T""™(X), we have

. X . w ) W
BT"H™) = dlmT"T(X) > dlmT"T(X) > dlmW = B8(T).

Thus, 3(T"™) > B(T}) for any m € N. On the other hand, the inclusions N (T7}}) C
N(T™) C N(T™*™), imply a(T}j}) < a(T™"™). Then T{j} € L(W) is a Fredholm
operator, so Ty is a Fredholm operator. Since T € L(X) is a Weyl operator,
by [11], Proposition 26.2, there exists a bijective operator R € L(X) and a finite
rank operator K € L(X) such that T = R + K. Therefore Tw = Rw + Kw,
with Ry injective and Ky of finite rank. This yields that

Thus, we conclude that Ty € L(WW) is a upper semi-Weyl operator. Again, by [11],
Proposition 26.2, there exists a injective operator S € L(W) and a finite rank op-
erator F' € L(W) such that Tyy = S + F, from which S = Ty — F. But, since
Tw (W) is closed and F(W) is a finite dimensional subspace of W, S(WW) is closed
in W. So S € L(W) is bounded below, and hence 0 ¢ 0,p(S) = 0ap(Tw — F).
By Remark 2.4, F € L(W) has an extension F € L(X) such that F € P(X, W),
then T — F € P(X,W). Consequently, (T — ﬁ)W = Tw — F. Thus, by part (ii),
0 € 0up(T — F) = 0ap((T = F)w) = 0up(Tww — F). That is, 0 € oap(Tw — F)
and 0 ¢ o.p(Tw — F), a contradiction. Hence 0 € oy (T). Now, we show that
0 € ow(Tw). To see this, suppose that 0 ¢ o (Tw) = ouw(Tw) U (Tw ). It follows
that 0 ¢ ouw(Tw). That is, Tyy € L(W) is an upper semi-Weyl operator. But, as
observed above this is impossible, hence 0 € o (Ty ). Consequently, we obtain the
equality 0w (T) = ow(Tw).

(v) Again, as in the first part of proofs (i) and (ii), by Lemmas 3.2 and 2.6, we
have that 0.t (T)\ {0} = ous(Tw) \ {0} and ouw(T) \ {0} = ouw(Tw ) \ {0}. As in the
proof of part (iv), to show the equality ouw(T) = ouw(Tw) we need only to prove
that 0 € ouw(T) N ouw(Tw). By similar representation arguments for semi-Weyl
operators as in part (iv), we can prove that 0 € oy (Tw) and 0 € oy (T).

Finally, to show parts (vi) and (vii), observe that o1,(T) = 0w (T) U acco(T') and
ob(Tw) = ow(Tw)Uacc o(Tw ). Hence, combining these equalities with (iii) and (iv),
we obtain that on,(T) = on(Tw). Similarly, combining the equalities ou, (7)) =
ouw (T) Uacc oap(T) and oun(Tw) = ouw (Tw) U acc oap (Tyw) with (ii) and (v) yields
ouw(T) = ouw(Tw)-

(viii) As observed in (iv), if T' € P(X, W) there exists n > 1 such that T7"(X) C W
and the inclusions

T (X)) CT™(W)CWCX VmeN
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hold. This implies that,

3 7> 3 R m.
dim = )/dlm m( )fﬂ(Tw)

But, since W/T"*™(X) C X/T"t™(X), we have

. X . w . w
BT"H™) = dlmT"T(X) > dlmT"T(X) > dlmW = B8(T).

Thus, S(T"t™) > B(Ty) for any m € N. Also, N(T{}) € N(T™) C N(T"t™)
implies that a(T}}) < a(T™+™). Consequently, Ty € L(W) is a Fredholm operator
if T € L(X) is a Fredholm operator. Reciprocally, if Ty € L(WW) is a Fredholm
operator, then T7;} € L(W) is a Fredholm operator for every non-negative integer m.
In particular, for n > 1 such that T"(X) C W, Ty}, € L(W) is Fredholm. Therefore
there exists an operator S € L(WW) and a finite rank operator F' € L(W) such that
STy, — F is the identity on W. Consider P = ST™ — ﬁ, F given by Remark 2.4,
this function is a bounded projection of X onto W. That is, P € L(X), P? = P and
P(X)=W. Let Tp: P(X) — P(X), Tpy = TPy, the compression of T generated
from P. Since X = N(P) ® P(X) and (I — P)(X) = N(P) C (ST")"}(F(X)) is
finite-dimensional, a(P) = B(P) < oo. It is easily seen that a(Tp) = a(PTP)—a(P)
and 3(Tp) = B(PTP)— (P). On the other hand, since P(X) = W is a T-invariant
subspace, then Tp = Tyy. Thus we have the equalities a(Tw ) = a(PTP) — a(P) and
B8(Tw) = B(PTP) — B(P), from which it follows that both a(PTP) and B(PTP)
are finite. That is, PT' P € L(X) is a Fredholm operator. Moreover, since

T = PT+ (I — P)T = PTP+ PT(I — P) + (I — P)T,

T € L(X) is Fredholm if and only if PTP € L(X) is Fredholm, because T — PTP =
PT(I-P)+ (I —P)T and PT(I — P)+ (I — P)T is a finite rank operator in L(X).
In consequence, T' € L(X) is a Fredholm operator. Thus we have proved that

T is Fredhom in L(X) = Tw is Fredhom in L(W) = T is Fredhom in L(X).

But, by Lemmas 3.2 and 2.6, o¢(T) \ {0} = o¢(Tw) \ {0}. Then, we can conclude
that O'f(T) = Uf(Tw).

(ix) The proof is analogous to that of part (viii) applying representation theorems
for upper semi-Fredholm operators. O

Remark 4.2. Recall that for T € L(X), 0 < p(AI = T) = g\ - T) < >
precisely when A is a pole of the resolvent of T' (see [11], Proposition 50.2). Also, it
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is well known that if A is a pole of the resolvent of T', then A € isoo (7). Evidently, if
A €isoo(T) then A € 9o (T). Thus, for T € P(X,W),if 0 ¢ isoo(T) (or 0 ¢ do(T),
0 € E(T), 0 € E(T)) then ¢(T) = oo or p(T) = oo. Therefore, the conclusions of
Theorem 4.1 remain true if the hypothesis ¢(T") = oo or p(T') = ¢ is replaced by
one of the following hypotheses: 0 ¢ isoo(T), 0 ¢ 0o(T), 0 € Z(T) or 0 € E(T™*).

Remark 4.3. According to Lemma 3.3 we can change the hypothesis p(T') = oo
or ¢(T) = oo by p(Tw) = o0 or ¢(Tw) = oo in Theorem 4.1. Consequently,
by the above remark, the conclusions of Theorem 4.1 remain true if the hypoth-
esis p(T) = oo, or ¢q(T) = oo, is replaced by one of the following hypotheses:
0¢isoo(Tw), 0¢ do(Tw), 0 € E(Tw) or 0 € E(Ty;).

We give an illustrative example for the behavior of the spectra of an operator T'
and its restriction Ty, when T does not satisfy the hypothesis of Theorem 4.1.

Example 4.4. Let X be a Banach space, and assume that W and Z are proper
closed subspaces of X with X = W @ Z. Let T be the projection of X on W
which is zero on Z. Since T is a projection operator, i.e. T? = T, hence o(T) =
{0,1}. Moreover, ogu(T) = 0ap(T) = ow(T) = ouww(T) = ou(T') = ouw(T) = o(T).
On the other hand, the operator Ty = T'|p(x) is the identity operator on W, so
o(Tw) = {1}. Also, osu(Tw) = 0ap(Tw) = ow(Tw) = oww(Tw) = on(Tw) =
ouw(Tw) = o(Tw).

As an immediate application of Theorem 4.1 and Remark 4.2, we obtain suffi-
cient conditions for the Fredholm properties corresponding to two given operators to

coincide.

Theorem 4.5. Suppose that T, S € P(X,W) and T, S coincide on W. Let one

of the following conditions is valid:

(i) 0 ¢ isoo(T)Uisoo(S),

(if) 0 ¢ Jo(T)U o (S),
(iii) 0 € E(T)NE(S),
(iv) 0 € Z(T*) NE(S*).
Then the following equalities are true:

(1) osu(T) = 05u(S), 0ap(T) = 0ap(S) and o(T) = o(S).
(ii) ow(T) = ow(S) and ouw(T) = ouw(S).
(111) O'b(T) = O'b(S) and Jub(T) = Jub(S).
(iv) o¢(T) = 0¢(S) and oue(T) = oue(S).

Proof. The given theorem immediately follows from Theorem 4.1 and Re-
mark 4.2, since Ty = Sw . [l

Online first 11



As a consequence of Theorem 4.5 and Remark 4.3, we obtain additional conditions
under which the Fredholm properties corresponding to two given operators coincide.

Corollary 4.6. Suppose that T,S € P(X,W) and T, S coincide on W. Let one
of the following conditions is valid:

(i) 0 ¢ isoo(Tw) (or 0 ¢ isoo(Sw)),
(ii) 0 ¢ do(Tw) (or 0 ¢ Jo(Sw)),
(iii) 0 € E(Tw) (or 0 € E(Sw)),

(iv) 0 € E(T};,) (or 0 € Z(S%)).

Then the following equalities are true:

(1) osu(T) = 05u(S), 0ap(T) = 0ap(S) and o(T) = o(S).
(ii) ow(T) = ow(S) and ouw(T) = ouw(S).
(111) O'b(T) = O’b(S) and O’ub(T) = Jub(S).
(iv) o¢(T) = 0¢(S) and ou(T) = ou(S).

Proof. The corollary immediately follows from Theorem 4.5 and Remark 4.3.
O

Astudillo-Villaba, Castillo and Ramos-Ferndndez in [4] studied invertibility, com-
pactness and closedness of the range for multiplication operators acting on the space
of functions of bounded p-variation in Wiener’s sense W BV, [0,1]. We give some
applications of our results for this class of operators.

Corollary 4.7. Let WBV,[0, 1] be the space of functions of bounded p-variation
in Wiener’s sense on [0, 1]. Suppose that u € W BV [0, 1] and consider the multiplica-
tion operator induced by u, M,: WBV,[0,1] — WBV,[0, 1], given by M, (f) = u-f.
If the set Z,, of zeros of w in [0,1] is a nonempty set and 0 ¢ isou([0,1]), then all
spectral equalities (1)—(ix) of Theorem 4.1 for M,, and its restriction on the subspace
Xz, ={f € WBV,[0,1]: f(t) =0 for allt € Z,} are true.

Proof. If Z, # 0, by [4], Proposition 6, Xz, is a proper closed M,-
invariant subspace of WBV,[0,1] such that A, (W BV,[0,1]) C Xz,. That is,
M, € P(WBV,[0,1], Xz,). On the other hand, if both p(M,) and ¢(M,) are finite
then 0 < p(M,) = ¢(M,) < oo. So, as observed in Remark 4.2, 0 is a pole of
the resolvent of M, and hence 0 € isoo(M,) = iso (u[0, 1]), a contradiction. Thus,
p(M,) = oo or g(M,) = co. Therefore by Theorem 4.1, we can conclude that all
spectral equalities (i)—(ix) of Theorem 4.1 for M, and its restriction on the sub-

space Xz, are true. (]
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Corollary 4.8. If u,v € WBV,[0,1] have the same zeros in [0,1], and 0 ¢
isou([0,1]) Uisov([0, 1]), then all spectral equalities (i)—(iv) of Theorem 4.5 for M,
and M, are true.

Proof. Suppose that u,v € WBV,[0, 1] have the same zeros in [0,1]. Then
Zy = Zy, 80 Xz, = Xz,. Also 0 ¢ isoo(M,) Uisoc(M,), because 0 ¢ isou([0,1]) U
isov([0,1]). Taking W = Xz, = Xz, , by Theorem 4.5 we have that all spectral
equalities (i)—(iv) of Theorem 4.5 for M, and M, are true. O

Remark 4.9. It is well known that, if two operators are similar then their
spectra are equals, and that this equality extends to several finer structures of the
spectra as point spectra, approximate point spectrum, Fredholm points, etc. Here
we study this situation, where the notion of similar operators is replaced by the
simplest hypotheses. Results analogous to Corollaries 4.7 and 4.8, can be proved for
composition operators and integral operators by using our results.

As a final application of our results, we state the following theorem which ensures
that bounded operators acting on complemented subspaces can always be extended
to the entire space preserving spectral properties.

Theorem 4.10. Let W be a complemented subspace of X and T € L(W). If
one of the following conditions is valid:

(i) 0 ¢ isoo(T),
(i) 0 ¢ do(T),
(iii) 0 € E(T),
(iv) 0 € Z(T™),
then T has an extension T € P(X,W) and the following equalities are true:

(i) osu(T) = o5u(T), Oap(T') = Oap (T) and o(T) = o(T),

(i) ow(T) = ow (_T) and oy (T) = UuWLT),
(iii) op(T) = op (_T) and oy, (T) = O'ubiT),
(iv) o¢(T) = o¢(T) and 0w (T) = 0w (T).

Proof. Since W is a complemented subspace of X, there exists a bounded
projection P € L(X) such that P(X) = W. Thus T = TP defines an operator in
P(X,W) and T = Ty . From this and according to Remark 4.3, if one of the condi-
tions (i), (ii), (iii) or (iv) is valid, then p(T') = p(Tw) = oo or ¢(T) = ¢(Tw) = oo.
But, by Lemma 3.3, p(T) = oo or ¢(T) = co. Therefore by Theorem 4.1, we obtain
the equalities (i)—(iv). O
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